THE NEW
DAGUERREIAN JOURNAL:
Devoted to the Daguerreian and Photogenic Art
Also embracing the Sciences, Arts, and Literature

WALTER A. JOHNSON, EDITOR
Vol. 1 No. 6
The New Daguerreian Journal has resumed publication due to an agreement with the Publications Committee of The Ohio State University Libraries.

Beginning with Volume 2 No. 1, the N.D.J. will become a quarterly publication, and will continue as before. As always your comments are welcome.
The New Daguerreian Journal

June 1973

Vol. I No.6

Executive Editor
Walter A. Johnson

Contributing Editors
Floyd & Marion Rinhart
Thomothy Daum
A. B. Garrett
Ernest Purdum
Cliff Krainik
Robert W. Wagner

Publisher
The Publications Committee of The Ohio State University Libraries

Send all correspondence and editorial matter to the Executive Editor: Walter A. Johnson, The Daguerrean Society, Inc., 1360 Haines Avenue, Columbus, Ohio 43212.

Mail subscription orders to the Publisher: Publications Committee, The Ohio State University Libraries, 1858 Neil Avenue, Columbus, Ohio 43210.

The New Daguerreian Journal

CONTENTS

New Policy Statement ... page 2
Whipple's Crayon-Style Vignette
by Floyd & Marion Rinhart page 4
Where to Look for the Original Daguerreian Journal
by Thomothy Daum ... page 7
Some Chemicals Used in the Early years of Photography: Health Hazards
by A. B. Garrett ... page 8
Daguerreian Equipment Gallery page 10
1839 in Broader Perspective
by Ernest Purdum ... page 12
Family Daguerreotypes, Found everywhere
... page 13
The Daguerrotype Reprinted from the Abbion, 1839
... page 14
Image Gallery .. page 15
The Night Gurney took the Cup
by Cliff Krainik ... page 16
The Baby in Daguerreotype
by Mrs. Anna L. Snelling page 19
Whipple's Daguerreotypes by Steam, Advertisement
... page 20

Copyrighted June, 1973, by Walter A. Johnson and the Daguerrean Society, 1360 Haines Ave., Columbus, Ohio 43212. All rights reserved.
Whipple’s Crayon-Style Vignette

by Floyd and Marion
Rinhart

George K. Warren, of Lowell, Massachusetts, was a newcomer to the practice of the daguerreian art when he made the above sixth-size daguerreotype, C. 1852. The method used for his vignette bears a close resemblance to the process described in Whipple’s patent.
Whipple's Vignette Style

by Floyd and Marion Rinhart

“A vignette portrait, i.e. the head and shoulders in the crayon style, I generally find more pleasing to the true artist and connoisseur, than either full-length or half figures,” wrote Marcus A. Root in his book The Camera and the Pencil, published in 1864. Root was referring to a method in photography that had been made possible through the invention of John A. Whipple of Boston. A patent (No. 6,056) was issued to Whipple on January 23, 1849 for a method which produced daguerreotypes like “portraits of faces taken in crayon.”

John Whipple was one of those ingenious Americans of his day, a man of multiple talents. He had been a chemist in the early days of photography and had produced chemicals for the new trade. His occupation had proved injurious to his health and, in 1843, he turned to photography. The many challenges of his new profession quickly brought out his inventiveness. In the mid-1840's, Whipple had experimented and failed to produce a photograph on glass. Eventually he did succeed and patented (in conjunction with W. B. Jones), in 1850, the first American photograph on glass (or negative) of its kind which became known as the crystalotype. This invention helped to promote paper photography in America. Meanwhile, he had patented his vignette process in 1849. Despite his patents of record, Whipple is best remembered for his fine success in daguerreotyping the moon. His first image of the moon had been made in December of 1849, and in 1851 he produced an excellent daguerreotype of the moon which received a prize medal when it was shown at the Crystal Palace Exhibition in London.

Whipple’s vignette invention was basically a simple one as detailed in his patent:

My improvement enables me to produce a daguerreotype minature of a face of a person resting upon a background which does not exhibit to any material extent the objects in the rear or vicinity of said face, the said background being made to have a cloudy appearance, or one very much like that which is usually given to portraits taken in crayon. For this purpose I usually place a light colored screen in rear of the sitter. This being done, I take another screen which I prefer to have a little darker in color than that of the first, through which an oval, circular, or other proper shaped aperture, being cut somewhat larger than the face, head, or object to be daguerreotypes. This latter screen I place in front of and very near to the said object, face or head of the person, and this I do so as not to intercept the light which is required to fall upon the said object or face of the sitter, in order to produce the light and shade of the picture, the said light being permitted to pass through the aperture of the screen. Holding the screen in this manner generally brings its image exactly, or very nearly, in the focus of the camera obscura when the face or object is brought into the same. The aperture of the second screen is to be made of such a size as will only exhibit to a person looking in the camera the head and such portion of the figure of a person as it may be desirable to represent in the picture, the same appearing through the aperture, while the remainder of the screen intercepts from view such parts as it may be desirable to omit in the picture. The sitter, if under these circumstances a daguerreotype is taken, would be represented as looking through the aperture or hole cut through the screen, the outline of the said hole being clearly defined in the picture; but as we do not wish to produce the said outline or any defined representation of the hole or aperture while the picture is being formed on the camera, we put the screen in motion—that is, we move it slightly and gently up and down laterally and in various directions, so as to prevent any defined outline of the aperture of the screen from being formed on the picture, taking care not to move the said outline into the field to be occupied by the face of the sitter or the object to be represented. In this manner we produce a beautiful blending of the outline of the aperture with the background, or the image of the background-screen, and at the same time intercept from the camera such parts of the dress or person as it may be desirable not to represent. A similar effect may be produced by keeping stationary the screen in which the aperture is made and placing it much nearer to the camera than the person or object to be
represented, and so that the focal distance of
the camera is adjusted to the said person or
object it shall be out of adjustment with respect
to the aperture of the screen—that is to say, so
that the image of the aperture shall not be so
clearly defined at the focus of the camera as the
image of the object or face of the sitter is. The
effect, however, is not near so beautiful as that
produced by the moveable screen arranged and
operated as above described. A glass screen
made transparent in such parts through which it
may be desirable to represent an object, and
opaque, or partially so, by paint or other means
in other parts, may be used to advantage...In
combination with the daguerreotype process,
the above specified mode of arranging and
operating an opaque, or partially opaque,
screen having an aperture or its equivalent, the
same being placed between the sitter or object
and the camera, and put in motion or main-
tained in position substantially as above speci-
fied.

In 1849 pioneer daguerreians were looking for
something new and different to offer the public.
The American daguerreotype portrait had become
the best in the world, yet the quest to improve it
went on. Whipple's invention came at an oppor-
tune time. Marcus Root and his brother Samuel, of
Philadelphia, were among the first to see the
potential of Whipple's vignette process. Root acted
quickly to secure the agency for the Whipple
patent in all states except New England according
to a letter published by Henry H. Snelling in The
History and Practice of the Art of Photography.
Root also wrote in his letter: “A series of beautiful
portraits are about being prepared by the Crayon
Process for the express purpose of being placed in
the exhibition at the “Art Union,” when amateurs,
artists, and the public generally will have an
opportunity of witnessing its effect.” John
Sartain, famous Philadelphia engraver, was, wrote
Root, one of several distinguished artists to recog-
nize and endorse the crayon daguerreotype.
Sartain used them as models for engraving por-
traits to be used for book or magazine illustra-
tions. At this time Sartain was publishing his own
Union Magazine of Literature and Art, 1849-1852.

The Root brothers continued to advertise “The
Crayon Daguerreotype” in 1851 and 1852 in their
Philadelphia and New York galleries. And, in the
New York Crystal Palace Exhibition of
1853-1854, Marcus A. Root, according to Horace
Greeley, had a “large and respectable collection on
view, many specimens of his crayon daguerreo-
types.”

When Samuel Humphrey wrote about the
crayon daguerreotype in 1853, he described mec-
hanical devices which differed from Whipple’s
patent. The method was the same but he told how
to make a screen by cutting a thin paper, scalloped
into a semi-circle which was put into motion when
the subject or object was exposed to the camera.
The device was kept straight by a wire frame.
Another method he described, and one which
seems to have been more popular than all others,
was a wheel having a twelve-inch hole. The
diameter was cut so as to resemble the teeth of a
large saw. When the wheel was put in motion
between the camera and the sitter, the saw tooth
effect would cause a blur on the outer edge of the
portrait (the subject being in focus, not the
wheel). The side of the wheel facing the sitter was
most often painted black, thus producing a por-
trait with a dark border rather than a light one.

Whipple’s invention began a new trend by
producing a vignette or crayon-style daguerreo-
type. Other inventions followed—the Charles
Anthony patent, January, 1851; Henry Insley
patent, January, 1852; and the William Yarnall
patent, December, 1852. Each process achieved its
artistic effect by a distinctly different method.
Collectively they would lay the groundwork for
photography’s vignette portrait to come.
WHERE TO LOOK FOR THE ORIGINAL DAGUERREIAN JOURNAL
by Thomosy Daum
Ohio University, Athens, Ohio

As the world's first photographic journal, the original Daguerreian Journal enjoyed a well-deserved popularity during its twenty continuous years of publication. Appearing on November 1, 1850 under the above title, the magazine ran for only one year, until December 15, 1851, before its name was changed to the more presumptuous Humphrey's Journal of the Daguerreotype and Photographic Arts, which lasted as a title for the next ten years (April 1852 ato April 1862). The name was then changed for a third and final time to Humphrey's Journal of Photography and the Heliographic Arts and Sciences, in keeping with the demise of the daguerreotype and the progress of other photographic processes. In spite of these various changes in nomenclature, it is the original title of the magazine which is the most famous and the one commonly used today.

Unlike its title, however, the Daguerreian Journal itself is no longer so common. Efforts to locate a complete run of the title which is available to the public turned up scant holdings in most libraries, although some major research collections have all but a few volumes. The only total run of all fourteen volumes which is readily accessible is unfortunately on a microfilm copy (distributed by Daguerreian Era, Pawlet, Vermont). If you would like to see an original issue, however, below is a list (as of June 1972) of the most complete holdings in public libraries through the U.S.

BOSTON: Harvard University Fogg Art Museum -
Vols. 1-10, 1850-59
Boston Public Library - Incomplete Vols. 1-2, 1850-51; 5-15, 1853-63

CHICAGO: John Crerar Library - Vols. 1-7, 1850-55;
Incomplete Vols. 16-20, 1865-69

CINCINNATI: Cincinnati Public Library - Vols. 15-17, 1863-66

NEW YORK CITY: Columbia University Library -
Vols. 1-20, 1850-69
New York Public Library - Vols. 1-3, 1850-52;
4-13, 1852-62; 14-19, 1852-68

PHILADELPHIA: University of Pennsylvania Library -
Vols. 10-17, 1858-64

ROCHESTER, N.Y.: George Eastman House - Vols. 1-5, 1850-53; Inc. vols. 6-9, 1853-60; Vols. 10-13, 1861-62; Inc. vols. 14-16, 1862-64
Eastman Kodak Co. Research Library - Vols. 3-7, 1852-56; Inc. Vols. 8-19, 1856-67

Photography: Source & Resource

National Endowment For The Arts to fund Photo-Source Book.

As you receive this the first edition of PHOTOGRAPHY: SOURCE & RESOURCE, a source book for creative photography, goes to press. This volume, written by Steven Lewis, James McQuaid, and David Tait, includes an article on The New Daguerreian Journal, and an index to collections of fine art photographs in the United States, as well as articles surveying teaching, criticism, and other areas.

The modest funding of the National Endowment will permit the authors to extend the project during the coming year and produce a second edition. They request the help of readers of this publication in expanding this index to include collections of historical photography.

They urge anyone knowing of a collection of such material to contact them at Box 126, Amesville, Ohio 45711. Only through the efforts of many individuals can this central reference work be created.
Some Chemicals Used in the Early Years of Photography:

HEALTH HAZARDS
by A.B. Garrett
Emeritus Professor
Department of Chemistry
The Ohio State University

The history of the development of the photographic process describes researches with many different chemicals as prospective light-sensitive photographic agents, sensitizers, developers, fixers, and color agents, mainly by trial and error procedures; even today the searches are continuing. The history of photography reads much like the history of the development of the electrolytic cell. As we recall the many chemicals used and studied in the search for a suitable photographic process our present day safety-conscious admonitions cause us to raise questions about the hazards in the use of several of the chemicals used, especially by amateurs in the field of chemistry.

One of the oldest of the seemingly promising processes is the daguerreotype process which involved coating a silver plate with iodine then sensitizing the plate with mercury vapor to develop the latent image. The use of mercury vapor as a developer was discovered accidentally by Daguerre when he placed an exposed iodine covered silver plate that had not produced a satisfactory latent image in a reagent cabinet to await cleaning the plate. Later when the plate was removed to be cleaned he found the image well developed. By process of elimination and careful observation, he found that none of the chemicals stored in the cabinet had any effect on developing the print but the development was due to mercury vapor that came from some mercury which had been spilled in the cabinet shelf. This observation perhaps represents the first evidence of a significant amount of mercury vapor in the air where liquid mercury is exposed to air!

Discovery of mercury vapor as a developer then led to the Daguerreotype procedure of coating the plate with a thin layer of iodine, exposing the plate in the camera, then developing the latent image on the plate by exposing the plate to mercury vapor, produced by heating the mercury to about 70°C. The print was then fixed by removing the unsensitized iodine with sodium thiosulfate, a process devised later by Sir John Hershel. Such is the story of the early long line of researches on the photographic process.

But today we recognize two dangerous aspects to this process — the exposure of the experimenter to vapors iodine and mercury. The vapor of mercury appears to be far more potentially dangerous than iodine. Iodine is an irritant to the mucus membrane and the skin — but for years a dilute solution of iodine (a tincture) was used as an antiseptic until it was determined that the irritant effect may outweigh the antiseptic effect — furthermore, better antiseptics have been developed.

Liquid mercury is not ordinarily toxic to man but inhalation of mercury vapor can be very injurious. It can cause not only irritation but destruction of lung tissues. Today very severe health-safety measures are required where liquid mercury is used in the laboratory or in industry to remove any mercury vapor from the air. Daguerre’s discovery not only made it possible to develop a rather satisfactory photographic process but it also demonstrated the existence of mercury vapor in the air in the presence of liquid mercury at room temperature.

Two other chemicals that may have been encountered in some of the early photographic processes are chlorine and bromine, which, like iodine, are irritating to the sensitive mucus membranes and corrosive to the skin if exposed to the vapors or to solutions of the halogens.

Of all the chemicals that may have been used in the early researches in photography, probably the most dangerous is cyanide. Potassium cyanide solution was used in the fixing solution of the ambrotype procedure as well as the melainotype. In neutral or alkaline solutions, cyanide is stable and safe to use provided it is not spilled or ingested. But the main danger of cyanide solution arises if the experimenter makes the solution acidic which causes hydrogen cyanide gas to be evolved. This gas, if inhaled or ingested, is lethal even in very small amounts. (Note: Solid cyanide if treated with acid will also evolve hydrogen cyanide.) The amateur should not use
cyanides in his work and professionals must be extremely careful with cyanides.

Most of the other chemicals used in the old processes of photography can be handled with safety unless a careless experimenter contaminates his food or drinking water with them. Today, in the modern dark room you will usually note the mild odor of sulfur dioxide that arises from the thiosulfate in the fixing bath. In low concentrations this gas is not harmful, but may be obnoxious. It is a good precaution to have a small ventilating fan in the room to remove such gases. If dyes are used in any of the processes the experimenter should inquire about any toxic properties of the particular dye being used. Dyes are such a broad class of chemicals that it is difficult to make a sweeping statement about their safety to all people under all circumstances. In general, most of them are probably safe to use under normal laboratory conditions — but if in doubt inquire about their possible toxicity. Furthermore, some people are allergic to some dyes.

To be sure, there are many chemicals that are very toxic — for example, arsine, AsH₃, phosgene, COCl₂, and malathione and many others. But the chances of their being encountered in photographic research are very remote. The sage advise is “when in doubt about the toxicity of the materials you are using, consult a specialist.”

19th Century Photo-Processes Taught

The Ohio State University will become the first university in the nation to offer instruction in the major photographic processes of the 19th century. The course offered this summer will be taught by Walter Johnson, Dept. of Photography and Cinema Photographic Historian and Donald P. Lokuta, a Ph D candidate.

The new course will instruct students on the methods of making Photogenic Drawings, the Daguerreotype, the Calotype, and all Collodion related processes. The class will be kept small so that as much individual attention as possible can be given to the students. An exhibit of the students work using the 19th century processes will be available for display late in 1973.
Another prize item from the Ernest Conover collection is the Coad’s Patent graduated Galvanic Battery, it measures 28 cm wide, 21 cm deep, and 35.6 cm high. As you can see it is in excellent condition and has a paper label pasted on the bottom indicating it was sold by the Plum Galleries, New York city.

Galvanic Battery.—An apparatus in which electricity is generated and evolved. The forms of galvanic batteries used are numerous, but those of Professors Daniels & Smee are considered best for daguerreotype purposes. The improved Daniel’s battery is figured at Fig. 46. It consists of an earthen-ware cell divided into two parts by a porous diaphragm or cup, which may be formed of wood, paper, earthen-ware, or animal membrane. Between this porous cup and the outer cell, is placed a cylinder of copper; and within the porous cup, a piece of amalgamated zinc; to which, as well as to the copper cylinder, is attached a binding screw to secure the copper wires to act as the poles of the battery. The wire attached to the zinc is called the positive pole; that to the copper the negative pole. The outer cell is filled with a saturated solution of sulphate of copper. The porous cup is filled with water; to which a few drops of sulphuric acid is added. A cell of this description is put in action by placing the porous cup containing the zinc in the centre of the cell, filling it with the acidulated water and forming the proper connection between the two poles. Fig. 47 represents Smee’s battery. It consists of a piece of platinized silver, A, on the top of which if fixed a beam of wood, B, to prevent contact with the silver. A binding screw, C, is soldered on to the silver plate to connect it with any desired object, by means of the copper wire, e. A plate of amalgamated zinc, D, varying with the fancy of the operator from one-half to the entire width of the silver, is placed on each side of the wood. This is set into a glass vessel, P,—the extreme ends of the wood resting upon its edge—on which the acid with which it is charged has no effect. The jar is charged with sulphuric acid, (common oil of vitriol) diluted in eight parts it bulk of water. The zinc plates of the battery have been amalgamated with quicksilver, and when the battery is set into the jar of acid, there should be no action perceived upon them when the poles F, G, are not in contact. Should any action be perceived, it indicates imperfect amalgamation; this can be easily remedied by pouring a little mercury upon them immediately after removing them from the acid, taking care to get none upon the centre plate A. Galvanic action is caused by the different chemical affinity of the liquid for the respective metals; it will dissolve the zinc—it will not dissolve the copper; in other words the water is decomposed, hydrogen makes its escape at the surface of the copper plate, in the form of gas; the oxygen combines with the zinc and forms an oxide of zinc. This oxide is dissolved by and united with the sulphuric acid, forming the sulphate of zinc. The exciting liquid has a greater affinity for one metal than for the other. For all practical purposes zinc is used for the positive metal; and for the negative metal copper is generally used—but in Smee’s battery platinized silver is employed. Professor Grove has also constructed a powerful battery in which plates of platinum are used. During the continuance of the chemical change spoken of a transfer of electricity is quietly taking place between the two metals; termed the disturbance of electric equilibrium. The positive electricity passes from the zinc through the liquid to the copper, and then continues its course along the wire, which connects the metals, to the zinc again. If the wire is
1839 IN BROADER PERSPECTIVE
by Ernest Purdum

To us, 1839 was the year in which photography was publicly announced. To fully appreciate the significance of the event, I find it interesting to look at the related social and scientific conditions of the time. Perhaps you will, too.

In 1839:

George Washington had been dead for forty years. Abraham Lincoln was 30 years old, Robert E. Lee 28.

In England, a 20 year old girl had been Queen for two years. Disliking her first name, Alexandrina, she preferred to be called Victoria. The King of the French was Louis Philippe. A rival, Louis Napoleon, was plotting in exile.

Henry Maudslay, who had developed the screw-cutting lathe about 1800, had been gone for eight years. His work was being continued by Sir Joseph Whitworth, Bart. Maudslay had developed a measuring engine (a sort of giant bench micrometer) capable of measuring increments of 1/10,000 inch. Whitworth in 1839 was no doubt working on the standard screw thread system he introduced in 1841. By 1859 he was to have his own measuring engine working to 1/2,000,000 inch.

The Dollonds, John and Peter, had developed achromatic lenses. By 1839, 106 years had passed since Chester More Hall had invented the achromatic lens, but it had been the Dollonds, about thirty years later, whose independent development had become known, and whose work had resulted in the most basic improvement in optics to this date. Peter Dollond's brother-in-law, Jesse Ramsden, had helped Dollond instruments attain a mechanical perfection equal to the level of their optics.

In France, Charles Chevalier, Ingenieur Opticien, son of Vincent Chevalier the microscope maker, was himself making fine microscopes with, of course, achromatic lenses. He had sold a camera to Niepce thirteen years before. Chevalier was probably working to metric measurement. On the first day of 1840 it would become illegal in France to sell by any other measure. (The metric system was proposed in 1791 and adopted in 1799.)

The telegraph was new. Morse's Code had been introduced the year before. Regular steamship service across the Atlantic was also started in 1838. The Cunard Lines would be started in 1840.

The watch-spring was not new. It had been known for over 300 years. Steel was difficult to make. The Bessemer Converter would not be developed for 26 years.

The Vernier scale was over 200 years old.

Ernst Leitz would not be born for four years. Carl Zeiss was 23.

Joseph Nicephore Niepce was remembered for, (with his brother) the building of the "Pyreolophore" an internal-combustion boat engine. The effort had been technically successful, but financially disastrous. He was not remembered for the camera bellows, or for the application of the iris diaphragm to the camera. Both these developments would be re-invented several times before becoming universally known.

He was not, of course, remembered for his work in photography, for he had kept this secret.

In 1839: The World was ready for the announcement of photography.
Family Daguerreotypes, found everywhere.

Cousin Frank, who adores Mary Ann.

Aunt Sally, who attends all the Charity Fairs.

Uncle Ben, who lives in Illinois.

Uncle Josh, who has been to Congress, and is rich.

"Lucy Lilac" and "Carrie Cowslip" (our Cousins, who write for the Magazine).

Our Uncle, Colonel Popkins. (Taken while on Duty.)

Cousin Fred, who sent this Picture from California to his Mother.

Cousin Tom, the New York Volunteer who received that Gold Snuff-box. (Picture rather vague.)
THE DAGUERROTYPE

M. Daguerre is a man of talent, for he is an excellent artist; he is a man of genius, he invented the Diorama; but he is an ambitious man, he created the Daguerrotype; and his name and his fame will be European, and will be handed down to posterity as belonging to a man of transcendent genius, who by unexampled industry, power of analyzation, and of synthetical combination, has created a new art. It is not a discovery, it is a brilliant creation!

What then is the Daguerrotype? We will explain. You paint a picture, there is a mass of colour on the canvass, as if it had been laid on by a Martin, it is a brilliant colour; it is seen by daylight. You throw the light produced by the admixture of hydrogen and oxygen gas upon it. The picture vanishes; the canvass is as if it were bleached. You paint another picture; it is composed of various colours; the colours are of equal depth; you manage to distribute the light thrown upon it in various intensities. The picture is perfect; all the lighter tints appear as if you had painted it with ten thousand shades of colour. Is this the Daguerrotype? No! You take a metal plate, with a block substance; you apply a prism, so that any object will be cast upon it; you take the prism away; the object remains as if had been engraved by the most delicate burin. This is the Daguerrotype. What is the substance spread upon the plate? It is a secret known only to M. Daguerre.

Such is this wonderful creation. The light of the sun or moon becomes an engraver, which makes no mistakes; every line is in undeniable proportion, a microscope of the highest power can discover no error; you see your face reflected in a glass, you retire, the reflection vanishes, your face is reflected on a blackened plate, the reflection remains. This is the Daguerrotype. The fleecy cloud, riding high in the heavens, in all its fantastic forms, “ever changing, ever new,” becomes indelibly engraved by the Daguerrotype. A butterfly flutters from flower to flower, you cannot catch it; had it the swiftness of light itself the Daguerrotype has a more rapid flight; its pencil draws with unerring fidelity every hue, every flutter of its wings. You want a sketch — an index to your imagination; the Daguerrotype gives you it. You want every line, every dot, every shade, you cannot trust to your own fancy; the Daguerrotype perfects the work!

M. Daguerre is no monopolist, he will make known his secret; he wants means to carry on his chemical researches—they must be afforded him. Mechanics have done much for art. We can copy statues and medallions; we can represent solid bodies on superficial planes, by wheels and levers, instead of the human hand. Chemistry has done more. A black pigment will do all these things perfectly in a moment, which expensive machinery can only accomplish in time, and imperfectly.

Honour then to M. Daguerre! He is to the Fine Arts what Bacon was to Science. The Daguerrotype is the novum organum of Art.

The Abbion - April 6, 1839
The above ¼ plate Daguerreotype is from the Cliff Krainik Collection, Arlington Heights, Ill. Cliff is not only a collector of fine Daguerreotypes, he also makes them. One other item of pride in the Krainik collection is an Imperial plate (11"x14") group portrait. It will be shown in a future issue of the N.D.J.
THE NIGHT GURNEY TOOK THE CUP
by Cliff Krainik

In June of 1851 Edward Anthony, then owner of the World's largest stockhouse of daguerreotype materials, offered a prize of five hundred dollars cash for the most important improvement in practical photography. It was his intention to advance and improve the Photographic Art by offering an incentive for competition. There was no restriction established as to the nature of the improvement. The improvement could have been

"... in the arrangement of light; in preparation of plates; in the manufacture of materials; in the arrangement of the chemical department, so as to impromote the health of the operators; in improvement of lenses; in the construction of apparatus; in simplifying the paper process; or in anything that has a direct tendency to advance the great discoveries of Talbot and Daguerre. An essay that shall point the way to valuable improvements will be regarded as a fair subject for reward."

Edward Anthony explained the reluctance on the part of the daguerreotypists to enter the competition by reason of "the natural modesty of inventors." Because the money was offered, he no longer felt that it belonged to him but to the Art. In June of 1852, with the advice of Professors Morse, Renwick, and Draper, and Renwick were chosen as judges. A deadline, December 31st, 1851, was established. Announcements appeared "simultaneously in London, Paris, and the United States." It was not difficult to imagine Anthony's disappointment when the deadline date passed without a single contestant stepping forth to claim the prize. It remains an enigma why no one competed for the prizes. Most certainly the year of 1851 saw improvements in the daguerreotype process: S. Peck patented a plate holder; C. J. Anthony held rights to the "Magic Back Ground;" and at least twenty-five essays appeared in the "The Daguerreian Journal" and "The Photographic Art Journal" which could easily be considered applicable for contention of the prize.
Draper, Anthony decided to convert the cash offer into a more desirable contest prize; namely a massive silver pitcher. The pitcher was produced by Ball, Black and Company. The contest now was specifically limited to the submission of one full plate daguerreotype per contestant. Artists from all countries were invited to send pictures for competition. The contest would be open for entry until November of 1853.

The rules for the contest were changed a short time after the announcement of the Pitcher. “The Daguerreotype offered for competition must be on what is called the full, two-thirds, half and quarter sizes.” Each competitor was thus required to submit four daguerreotypes. The stage was set for America’s first strictly photographic contest. The judging of the daguerreotypes occurred on November 25, 1853. Of the ten contestants, Jeremiah Gurney’s entries were considered “eminently the best”. Samuel Root of New York was presented two goblets for ranking next in excellence. Gabriel Harrison, New York received an “honorable mention” for his full plate. Alexander Helser, Galena, Illinois (the future Chicago photographer) received an “honorable mention” for his quarter plate entry. George Barnard, S. K. Warren and J. Brown each received similar citations for their efforts with full plates.

To receive the Pitcher and its inherent honours, Gurney threw a dinner party on the evening of December 21, 1853 at his establishment, 349 Broadway. The richly furnished gallery was brilliantly lighted. His reception room was filled with friends, colleagues and the Awards committee. The formal presentation began about eight o’clock when Professor James Renwick, chosen Chairman, delivered a short address. Mr. Bidwell, on behalf of Mr. Anthony, next addressed the assembly. The essence of Mr. Bidwell’s embellished speech was to recall the events leading up to the presentations and to name Mr. Gurney officially as the victor. “The issue was that Mr. Gurney, in whose room we are now collected, is the successful competitor, and no one, I think, who looks at the splendid productions before us, can doubt the accuracy of the judgement (applause)” and “It is unnecessary for me to say anything about the merit of Mr. Gurney, because we have before us proof of his excellence in his art. They are noble exhibitions of what he, and many other artists in the land can do, by untiring exercise, talent, and industry.....(applause). William Wallace, the editor of the Mercantile Guide, then responded on Mr. Gurney’s behalf. Wallace stated that he was accepting the award for Mr. Gurney who, because of his modesty and unobtrusiveness could not respond at the moment. Don’t forget this was, after all, a Victorian award banquet. Wallace went on to state that Mr. Gurney considered this occasion one of the most pleasurable moments of his life. “Mr. Gurney entertains the most grateful feelings of all parties, he presents his thanks for their kindness on this occasion, and I believe he is going to give us material aid. (applause).” Dinner was then served in excellent style.

Professors Draper and Morse sent letters of congratulations and expressed their regrets that they could not attend the ceremonies. Edward Anthony was the first to lift his glass on high to “Our Modern Prometheus, Gurney, and Daguerre, who have stolen fire from the sun, and rekindled fond affection’s flame.” (applause) S. D. Humphrey offered the next sentiment, “Daguerre and his Art - which, born of the same element as the rainbow, like it, spans the universe...” (applause) H. H. Snelling, “May unity of purposes be Daguerreotyped upon their (the operators) hearts and indelibly fixed by those golden attributes, Friendship, Charity, and Harmony.” A toast from Charles Meade, “The Memory of Daguerre.” Toast from P. Haar, “Daguerre’s Work.” From an unnamed gentleman, “Mr. Anthony and Mr. Gurney - The generosity of the former and the skill of the latter.” And on and on the toasting, and the consuming continued. Henry Anthony (Edward’s brother) related a humorous story about an Irishman and a rabbit trap. Mr. Gurney then toasted his absent competitors and present friends. Additional rounds were initialed by Leland, Beckers, Manchester, Jackson, and Burgess.....

Numerous other sentiments and toasts were offered “and as it is quite natural on like occasions, there was quite a lively time experienced after the more sedate ones had left.” The serious partying had begun. “At the second edition of the meeting, Mr. John Roach was chosen President, and the corks, toast, bottles, and tumblers were as thick as a fog on
a damp morning. (no doubt some experienced a similar feeling about the eyes.)" The frequency of speeches and toasts increased. "In fact, beyond the capacity of an ordinary reporter to keep pace with." L. Chapman delivered an elegant speech about the purity of the silver in the pitcher. This brought about a story of an Irish girl by Goldsmith which had to be interrupted by Mr. Chapman "much to the merriment of the company." Mr. Hayes cheered on the gaiety of the company with a "beautiful song." More stories, more toasts, more singing: "the lamp held out to burn until one o'clock."

Cliff Krainik with permission from The Chicago Photographic Collectors Society Journal

Ohio State Acquires Pioneer Photo Collection

by Walter Johnson

The Ohio State University acquired one of the largest collections of pioneer photography in February of this year. The purchase of the Floyd and Marion Rinhart collection was the result of two private gifts to the University Development Fund totaling $125,000.

The Rinhart collection of Daguerreian art and other rare photographic images is the only one of its kind in existence which illustrates the image of America from 1840 to 1860. The collection is housed at the Department of Photography and Cinema on the main campus of the Ohio State University.

The collection includes more than 1,160 examples of the daguerreotype – many of them in an excellent state of preservation. It has over 500 specimens of ambrotypes, and over 100 examples of the early photographs on iron sheet metal. An American patented (1849) talbotype bearing the Langenheim seal is part of the collection.

An integral part of the collection is the miniature cases which contain the rare photographs. The cases, many extremely rare, are made of wood-frame construction covered with leather, molded thermoplastic, and other compositions, which are embossed with designs taken from many art themes. Equally important to the collection are the many items of research, patent records, quantities of relics (for research experiments), upwards of 2,000 copy negatives, and numerous selected written materials.

The Rinhart collection assumes three major themes of photography study. One was the study of the physical nature of the Daguerreotype plate markers, hallmarks, indentations from plate holders, color, and other facets previously unexplored. The second study was an intensive research of early photograph books, periodicals, newspaper, patent records, and census records. Within the Rinharts’ voluminous notes are over 1,700 names of pioneer Daguerreotypists and some 200 plus jobbers and manufacturers of photographic supplies.

The third research area was the study of miniature case art then used by the photographers during the period of 1840 to 1865. Many cases within the Rinhart collection have been restored to their original condition and are suitable for museum exhibition.

The collection has provided the Rinharts with material for numerous articles on pioneer photography plus three books: American Daguerreian Art, 1967, American Miniature Case Art, 1969, and America’s Affluent Age, 1971. A fourth book titled Death in America: A Pictorial History, is scheduled for publication soon.

The Department of Cinema and Photography plans to use the Rinhart collection as a research unit to expand the photographic history studies curriculum.
broken, the transfer of electricity is interrupted, and the chemical effects, so far as electricity is concerned, cease; hydrogen is no longer evolved from the copper plate, and the zinc (if it be pure or amalgamated) ceases to be dissolved. The fundamental principle, which cannot be too strongly enforced, is, that the passage of the electricity in the liquid is from the zinc to the copper. If this simple fact is borne in mind, it will decide in every case the question which confuses so many—namely—which is the positive, and which the negative end of the battery? The positive is the end where the electricity leaves a battery; the negative where it re-enters it. The direction taken by the current being ascertained by the mere inspection of the situations of the two metals in a cell, the other points follow as a necessary consequence. If, for instance, the wire connecting the two plates, by which we have illustrated a single voltaic pair, were broken, and the circle completed by interposing some apparatus between the broken ends, an examination of the arrangement would at once show, that as the electricity passes from the zinc to the copper, it would leave the battery by the wire attached to the upper plate, and having passed through the interposed apparatus, would return to the battery by the wire attached to the zinc plate; the copper which is the negative metal, forms the positive end of the battery, and the zinc, the positive metal, forming the negative end.—(Walker.)

THE BABY IN DAGUERREOTYPE

By Mrs. Anna L. Snelling.

What! put her in daguerreotype,
And victimize the pet!
Those ruby lips, so cherry-ripe,
On lifeless silver set!

The frisking, laughing, bouncing thing,
So full of life and glee—
A restless bird upon the wing—
A sunbeam on the sea!

Put shadows on that forehead fair—
That look of quick surprise—
And give a dull unmeaning stare
To those blue laughing eyes!

Now, do you think a chance you’ve caught?
Out with the colors quick;
She’s screaming at the very thought
Of such a shabby trick.

Now she is still—fly to the stand;
The smiling features trace!
In vain — up goes a tiny hand,
And covers half her face.

Give up the task—let childhood be
Nature’s own blooming rose!
You cannot catch the spirit free,
Which only childhood knows.

Earth’s shadows o’er that brow will pass,
Then print her at your will;
When time shall make her wish, alas!
She were a baby still.

The Photographic Art-Journal, February 1851.
WHIPPLE'S DAGUERREOTYPES

BY STEAM.

After much patient experimenting I have finally succeeded in applying, with more uniform results and certainty, Steam power to do all the mechanical parts of Daguerreotyping, and consequently am enabled to furnish my customers with

BETTER MINIATURES IN LESS TIME THAN FORMERLY, ESPECIALLY

BEAUTIFUL LIKENESSSES OF LITTLE CHILDREN,

Which I will warrant to make satisfactory to parents,

If they will call upon me between the hours of 11 and 2, when the sky is clear.

I HEREBY EXTEND AN INVITATION TO ALL,

WHETHER THEY WISH TO OBTAIN LIKENESSES OR NOT,

To call and examine my large collection of Daguerreotype Portraits, and see the operation of the Miniature Steam Engine.

JOHN A. WHIPPLE.

The New Daguerreian Journal is published by the Publications Committee, The Ohio State University Libraries, 1858 Neil Ave., Columbus, Ohio 43210. Published quarterly at an annual rate of $10.00, single copies $2.50 each, and $15.00 foreign subscription (excluding Canada).